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Introduction to modelling and simulation 
of the Dice Game 
Chris Robbins, Grallator 

 
The Dice Game is a turn-based simulation of a system of dependent steps that are subject to 
statistical fluctuation. Processing at each turn is batched so that any early-release input from a 
previous player is not available until the next turn. In the base game, random variation is introduced 
using a standard six-sided die. The following introduces some modelling and simulation techniques 
that can be applied to the game. 
 
Some definitions: 
 
Players are numbered 1, 2, …, N, with player 1 introducing counters into the system. 
Let 𝑄௜,௜ାଵ be the number of counters between player i and player i + 1 (𝑖 < 𝑁) 
When the game is first set up 𝑄௜,௜ାଵ = 𝑄଴ > 0   ∀ 𝑄௜,௜ାଵ . 
Let 𝑃௜,௜ାଵ(𝑁) be the probability that 𝑄௜,௜ାଵ has exactly N counters. 
Let 𝑅௜ be the die roll value of player i on a particular turn. 
 
Exercise 1: Show that the minimum value of 𝑄௜,௜ାଵ is 1 for all rounds played. 
 
Simplifying the problem. 
 
To begin the analysis, it is useful to simplify the base game, which has 10 players and dice that range 
from 1 to 6, to something more manageable. In the first case, let's consider dice that can roll a 1 or a 
2, so we only have two outcomes to consider for each die, and also consider only the first two 
players and the first counter pile 𝑄ଵ,ଶ, which will be initialised to two counters. 
 

 
 
 
There are four possible roll outcomes 
 

𝑄ଵ,ଶ at the beginning of 
the turn 𝑅ଵ 𝑅ଶ 

𝑄ଵ,ଶ at the end of the 
turn 

2 1 1 2 

2 2 1 3 

2 1 2 1 

2 2 2 2 
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From the above it is easy to construct the probability of outcomes after the first round as 
 

𝑃ଵ,ଶ(1) =
ଵ

ସ
 

 
𝑃ଵ,ଶ(2) =

ଵ

ଶ
 

 
𝑃ଵ,ଶ(3) =

ଵ

ସ
 

 
The above states that 50% of the time 𝑄ଵ,ଶ won't change, 25% of the time it will reduce by 1 and 
25% of the time it will increase by 1. For the case where it increases by 1 to 3, the following 
outcomes are available in the next round 
 

𝑄ଵ,ଶ at the beginning of 
the turn 𝑅ଵ 𝑅ଶ 

𝑄ଵ,ଶ at the end of the 
turn 

3 1 1 3 

3 2 1 4 

3 1 2 2 

3 2 2 3 
 
The above are the same relative changes with the same probabilities as found for the case with 
𝑄ଵ,ଶ = 2. It is reasonably easy to see that in general, when 𝑄ଵ,ଶ = 𝑁  (𝑁 ≥ 2) at the start of a turn, 
the probabilities of other values at the end of a turn are always 
 

𝑃ଵ,ଶ(𝑁 − 1) =
ଵ

ସ
 

 
𝑃ଵ,ଶ(𝑁) =

ଵ

ଶ
 

 
𝑃ଵ,ଶ(𝑁 + 1) =

ଵ

ସ
 

 
 
The case in the first turn where there is only one counter left at the end of the round has different 
outcomes in the next turn as player 2 will process one counter irrespective of the value of their 
roll, 𝑅ଶ. 
  

𝑄ଵ,ଶ at the beginning of 
the turn 𝑅ଵ 𝑅ଶ 

𝑄ଵ,ଶ at the end of the 
turn 

1 1 1 1 

1 2 1 2 

1 1 2 1 

1 2 2 2 
 
So, in the case where 𝑄ଵ,ଶ = 1 at the start of a turn, the probabilities of other values at the end of a 
turn are 
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𝑃ଵ,ଶ(1) =
ଵ

ଶ
 

 
𝑃ଵ,ଶ(2) =

ଵ

ଶ
 

 
The values calculated are, in general, the probabilities that a value of 𝑄ଵ,ଶ = 𝑁 will change to a value 
of 𝑄ଵ,ଶ = 𝑀 in a turn. They are often called transition probabilities, and it is useful to arrange them 
as a matrix, T, where the transition probabilities are arranged as shown below. 
 
 

𝐹𝑟𝑜𝑚 𝑄ଵ,ଶ =

1 2 3 4 ⋯

𝑇𝑜 𝑄ଵ,ଶ =

1
2
3
4
⋮

⎣
⎢
⎢
⎢
⎢
⎡

భ

మ

భ

ర
0 0 ⋯

భ

మ

భ

మ

భ

ర
0 ⋯

0 భ

ర

భ

మ

భ

ర
⋯

0 0 భ

ర

భ

మ
⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⎦
⎥
⎥
⎥
⎥
⎤
 

 
Exercise 2: Why must the columns of the transition matrix must sum to one. 
 
In addition to the above, a state vector after turn t, st is defined, where element i gives the 
probability 𝑃ଵ,ଶ(𝑖) at each turn. Initially, 𝑄ଵ,ଶ = 2 with probability 1, i.e. 𝑃ଵ,ଶ(2) = 1 , while after one 
turn, the probabilities have been previously calculated to be 𝑃ଵ,ଶ(1) = భ

ర
, 𝑃ଵ,ଶ(2) = భ

మ
, 𝑃ଵ,ଶ(3) = భ

ర
. 

The state vectors for at turn t, 𝑠௧, are shown below. 
 

𝑠଴ =

⎣
⎢
⎢
⎢
⎡
0
1
0
0
⋮ ⎦

⎥
⎥
⎥
⎤

,  𝑠ଵ =

⎣
⎢
⎢
⎢
⎡

భ

ర
భ
మ
భ
ర

0
⋮ ⎦

⎥
⎥
⎥
⎤

 

 
 
It is easy to show that the vector 𝑠ଵ is given by the matrix-vector multiplication 
 

𝑠ଵ = 𝑇𝑠଴ 
 
Interestingly, constructing the vector 𝑠ଶ = 𝑇𝑠ଵ, gives the following 
 

𝑠ଶ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

ଵ

ସ
ళ

భల
భ

ర
భ

భల

0
⋮ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
Exercise 3: Show that these are the correct probabilities of 𝑄ଵ,ଶ having 1, 2, 3 or 4 counters after 

two turns. 
 
 
 



4 
 

It can also be shown that 
 

𝑠ଶ = 𝑇𝑠ଵ = 𝑇𝑇𝑠଴ = 𝑇ଶ𝑠଴ 
 
And in general, after t turns 
 

𝑠௧ = 𝑇௧𝑠଴ 
 
Another general result is that after t turns, the last non-zero value in st is element t + 2. Therefore, 
the larger the number of turns, the larger the possible size of 𝑄ଵ,ଶ, i.e. the possible number of 
counters can grow without bound. 
 
The evolution of the elements of the state vector with number of turns is shown below. 
 

 
 
 
The approach used above can be used for the first two players in the actual game where die rolls can 
range from one to six. The number of possible roll combinations is now much larger: 6 x 6 rather 
than 2 x 2. 
 
Exercise 4: Show that when the initial value is 𝑄ଵ,ଶ = 4, the following probabilities are obtained 

for the value of 𝑄ଵ,ଶ after a turn. 
 

𝑃ଵ,ଶ(1) =
ଵ

ଵଶ
 

 
𝑃ଵ,ଶ(2) =

ଵ

ଽ
 

 
𝑃ଵ,ଶ(3) =

ହ

ଷ଺
 

 
𝑃ଵ,ଶ(4) =

ଵ

଺
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𝑃ଵ,ଶ(5) =
ଵ

଺
 

 
𝑃ଵ,ଶ(6) =

ଵ

଺
 

 
𝑃ଵ,ଶ(7) =

ଵ

ଵଶ
 

 
𝑃ଵ,ଶ(8) =

ଵ

ଵ଼
 

 
𝑃ଵ,ଶ(9) =

ଵ

ଷ଺
 

 
Repeating the above for all initial values of 1 to 6 allows the first six columns of the transition matrix 
to be constructed. The seventh column is the same as the sixth but with all elements one row lower, 
similar to the structure found in the simplified case analysed. 
 
The first three players (simplified). 
 
The next obvious step is to consider the first three players and the quantities 𝑄ଵ,ଶ and 𝑄ଶ,ଷ, again 
using the simplified version where a die can roll a one or a two. 
 

 
 
The pile 𝑄ଵ,ଶ behaves as before, and it might be tempting to apply a similar approach to 𝑄ଶ,ଷ, but 
with a slight modification to account for the fact that while the change in 𝑄ଵ,ଶ depends on the initial 
state of 𝑄ଵ,ଶ, and a random addition by player 1, the change in 𝑄ଶ,ଷ depends not only on its initial 
state and a random addition by player 2, but also on the initial state of 𝑄ଵ,ଶ. If 𝑄ଵ,ଶ ≥ 2, then the 
behaviour for 𝑄ଶ,ଷ is as that for 𝑄ଵ,ଶ and the transition matrix T can be used. However, if 𝑄ଵ,ଶ = 1, 
the transition matrix changes as if player 2 rolls a two then only one counter can be passed (a 
constraint that doesn't apply to player 1, who always brings in as many counters as the roll). 
 
Exercise 5: Show that in the case where 𝑄ଵ,ଶ = 1, the transition matrix, U,  is given by 
 

𝐹𝑟𝑜𝑚 𝑄ଶ,ଷ =

1 2 3 4 ⋯

𝑇𝑜 𝑄ଶ,ଷ =

1
2
3
4
⋮

⎣
⎢
⎢
⎢
⎢
⎡
1 భ

మ
0 0 ⋯

0 భ

మ

భ

మ
0 ⋯

0 0 భ

మ

భ

మ
⋯

0 0 0 భ

మ
⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⎦
⎥
⎥
⎥
⎥
⎤
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It is tempting to try to use the probability 𝑃ଵ,ଶ(1) to weight the use of the T matrix and the U matrix, 
so that the state vector for 𝑄ଶ,ଷ, after turn t, rt is given by 
 

𝑟௧ = 𝑃ଵ,ଶ(1)𝑈𝑟௧ିଵ + ቀ1 − 𝑃ଵ,ଶ(1)ቁ 𝑇𝑟௧ିଵ 
 
The logic being that the probability of 𝑄ଵ,ଶ having one counter is 𝑃ଵ,ଶ(1), in which case the U 
transition matrix is used, while the probability of 𝑄ଵ,ଶ having more than one counter is 

ቀ1 − 𝑃ଵ,ଶ(1)ቁ, in which case the T transition matrix is used. However, beware – this does not work! 
To see why, consider the probabilities after one turn, then after two. As initially 𝑄ଵ,ଶ = 2, the T 
matrix is used in both cases and the state vectors are 
 

𝑠ଵ =

⎣
⎢
⎢
⎢
⎡

భ

ర
భ
మ
భ
ర

0
⋮ ⎦
⎥
⎥
⎥
⎤

,  𝑟ଵ =

⎣
⎢
⎢
⎢
⎡

భ

ర
భ
మ
భ
ర

0
⋮ ⎦

⎥
⎥
⎥
⎤

 

 
 
These are the correct values. Applying  𝑟ଶ = 𝑃ଵ,ଶ(1)𝑈𝑟ଵ + ቀ1 − 𝑃ଵ,ଶ(1)ቁ 𝑇𝑟ଵ gives 
 

𝑟ଶ =

⎣
⎢
⎢
⎢
⎢
⎡

ହ

ଵ଺
మళ

లర
ళ

యమ
య

లర

⋮ ⎦
⎥
⎥
⎥
⎥
⎤

 

 
Which is wrong! The reason is that this method assumes that for every possible value of s1 at the end 
of one turn, it is possible to use every possible value of r1. To see why this is wrong consider all 
possible dice rolls and the values of 𝑄௜,௜ାଵ after the first round. 
 
 

𝑄ଵ,ଶ at the 
beginning 
of the turn 

𝑄ଶ,ଷ at the 
beginning 
of the turn 

𝑅ଵ 𝑅ଶ 𝑅ଷ 
𝑄ଵ,ଶ at the 
end of the 

turn 

𝑄ଶ,ଷ at the 
end of the 

turn 

2 2 1 1 1 2 2 

2 2 2 1 1 3 2 

2 2 1 2 1 1 3 

2 2 2 2 1 2 3 

2 2 1 1 2 2 1 

2 2 2 1 2 3 1 

2 2 1 2 2 1 2 

2 2 2 2 2 2 2 
 
This gives the probabilities as shown in s1 and r1. Grouping outcomes another way 
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𝑄ଶ,ଷ Possible values of 𝑄ଵ,ଶ 

1 2, 3 

2 1, 2, 2, 3 

3 1, 2 
 
The above shows that you cannot have a state where 𝑄ଵ,ଶ = 1 and 𝑄ଶ,ଷ = 1, or a state where 𝑄ଵ,ଶ =

3 and 𝑄ଶ,ଷ = 3, as was naively assumed when using the expression  
 

𝑟௧ = 𝑃ଵ,ଶ(1)𝑈𝑟௧ିଵ + ቀ1 − 𝑃ଵ,ଶ(1)ቁ 𝑇𝑟௧ିଵ 
 
When 𝑄ଶ,ଷ = 1 (which is ¼ of the outcomes of turn 1), 𝑄ଵ,ଶ must be 2 or more, and the following 
probabilities after the next turn have been previously calculated for 𝑃ଵ,ଶ and are the same for 𝑃ଶ,ଷ, 
i.e. 
 

𝑃ଶ,ଷ(1) =
ଵ

ଶ
 

𝑃ଶ,ଷ(2) =
ଵ

ଶ
 

 
When 𝑄ଶ,ଷ = 2 (which is ½ of the outcomes of turn 1), 𝑄ଵ,ଶ can be any value, but is twice as likely to 
be two than one or three. For the case where 𝑄ଵ,ଶ = 1 (which happens ¼ of the time when 𝑄ଶ,ଷ = 2) 
the probabilities have been calculated (when building the U matrix) as 
 

𝑃ଶ,ଷ(1) =
ଵ

ଶ
 

𝑃ଶ,ଷ(2) =
ଵ

ଶ
 

 
When 𝑄ଶ,ଷ = 2 and 𝑄ଵ,ଶ = 2 or 𝑄ଵ,ଶ = 3 (which happens ¾ of the time when 𝑄ଶ,ଷ = 2) the 
probabilities have been previously calculated for 𝑃ଵ,ଶ and are the same for 𝑃ଶ,ଷ, i.e. 
 
 

𝑃ଶ,ଷ(1) =
ଵ

ସ
 

 
𝑃ଶ,ଷ(2) =

ଵ

ଶ
 

 
𝑃ଶ,ଷ(3) =

ଵ

ସ
 

 
When 𝑄ଶ,ଷ = 3 (which is ¼ of the outcomes of turn 1), 𝑄ଵ,ଶ must be 1 or 2 (½ the time each). When 
𝑄ଵ,ଶ = 1, the probabilities calculated for the U matrix are used, i.e. 
 

𝑃ଶ,ଷ(2) =
ଵ

ଶ
 

𝑃ଶ,ଷ(3) =
ଵ

ଶ
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When 𝑄ଵ,ଶ = 2, the probabilities calculated for the T matrix are used, i.e. 
 

𝑃ଶ,ଷ(2) =
ଵ

ସ
 

𝑃ଶ,ଷ(3) =
ଵ

ଶ
 

𝑃ଶ,ଷ(4) =
ଵ

ସ
 

 
The total probabilities are calculated as a weighted sum of all components so that the following 
probability is found for the first element of state vector r2. 
 

𝑃ଶ,ଷ(1) =
ଵ

ସ
×

ଵ

ଶถ
ொమ,యୀଵ

+
ଵ

ଶ
×

ଵ

ସ
×

ଵ

ଶᇣᇧᇤᇧᇥ
ொమ,యୀଶ

ொభ,మୀଵ

+
ଵ

ଶ
×

ଷ

ସ
×

ଵ

ସᇣᇧᇤᇧᇥ
ொమ,యୀଶ

ொభ,మவଵ

=
ଽ

ଷଶ
 

 
Note, the above is slightly lower than the incorrect value of ఱ

భల
 previously found. It is left as an 

exercise to calculate the value of 𝑃ଶ,ଷ(2), 𝑃ଶ,ଷ(3), 𝑃ଶ,ଷ(4) using the above to show that the correct 
state vector after two turns for 𝑄ଶ,ଷ is 
 

𝑟ଶ =

⎣
⎢
⎢
⎢
⎢
⎡

ଽ

ଷଶ
భఱ

యమ
ళ

యమ
భ

యమ

⋮ ⎦
⎥
⎥
⎥
⎥
⎤

 

 
At this point, it is becoming evident that the analysis is becoming quite complex, although it did give 
useful insight into how the size of 𝑄ଵ,ଶ can grow as the number of turns assumed grows, and that in 
the long term, there is a non-zero probability that the queue will be, for the simplified case where 
the maximum roll, M, is 2 and Q0 = 2, two more than the number of turns taken. For the more 
general case where M and Q0 can take arbitrary values, it can be shown that the maximum 
theoretical possible number of counters in 𝑄ଵ,ଶ after t turns, Z(t, Q0), and assuming the minimum roll 
value is 1, is given by 
 

𝑍(𝑡, 𝑄଴) = (𝑀 − 1)𝑡 + 𝑄଴ 
 
Note, the above expression is useful when constructing a computer simulation of the system. 
 
Exercise 6: Derive the above expression for Z. 
 
As a last point, the analysis only considers the number of counters between players and not the 
throughput. The actual throughput at the end of the game can be obtained by adding an extra 
dummy player that always rolls a zero, i.e. the number of counters between the last actual player 
and the dummy player can only ever increase. Its value at the end of the game gives the throughput 
of the system. It is left as an exercise to incorporate this into the analysis. 

 
Further analytic development is left as a research exercise. 
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Simulation 
 
Another possible approach is computer simulation. For small problems the simulation can consider 
every possible outcome explicitly, while for larger problems we must be content with a random 
sample of games, which should give results that tend towards the actual values as the sample size 
increases. 
 
A definition of "small problem" by enumerating the possible number of games playable. This 
depends on the number of players, p, the number of roll outcomes on a die, V, and the number of 
turns played, t, and is given by 
 

Ω = 𝑉௧௣ 
 
For 3 players, using die that can roll 1 or 2 and 5 turns, there are  

 
Ω = 𝑉௧௣ = 2ହ×ଷ = 2ଵହ = 32,768 

 
possible games. This is easily covered in its entirety with a computer simulation. For 10 players, using 
die that can roll 1 to 6, and 20 turns, there are  

 
Ω = 𝑉௧௣ = 6ଶ଴×ଵ଴ = 6ଶ଴଴~4 × 10ଵହହ 

 
possible games. This is an unimaginably large number! (A lot of the games will be degenerate in their 
outcome, so that the total number actually required is fewer than this, but significant effort is 
required to identify the degeneracies!) 
 
An example code written in Python 3 that uses sampling is appended to this document. It can be set 
up to run for a number of different problems by changing the values of the game configuration 
variables: 
 
players = 3 
rounds = 2 
startQ = 2 
dieLow = 1 
dieHigh = 2 
 
sampleSize = 1000000 

 
The first two are evident (you must use at least two players!). The value of startQ defines the initial 
number of counters between players, while dieLow and dieHigh give the minimum and maximum 
dice roll values. The value of sampleSize determines how many games are played to generate 
statistics. 
 
The above configuration determines the state vectors for 𝑄ଵ,ଶ and 𝑄ଶ,ଷ after two rounds in the 
simplified game with three players. It produces output similar to 
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  0% complete 
 10% complete 
 20% complete 
 30% complete 
 40% complete 
 50% complete 
 60% complete 
 70% complete 
 80% complete 
 90% complete 
 Finished 
 
Number of players: 3 
Number of rounds:  2 
Sample size:       1,000,000 
 
        Q 1 ,2       Q 2 ,3     
P( 1) 2.497590E-01 2.806890E-01 
P( 2) 4.379210E-01 4.689550E-01 
P( 3) 2.498410E-01 2.191390E-01 
P( 4) 6.247900E-02 3.121700E-02 
 
These may be compared with the analytic values 
 

𝑠ଵ =

⎣
⎢
⎢
⎢
⎡

భ

ర
ళ

భల
భ
ర
భ

భల

⋮ ⎦
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎡
2.500000𝐸 − 01
4.375000𝐸 − 01
2.500000𝐸 − 01
6.250000𝐸 − 02

⋮ ⎦
⎥
⎥
⎥
⎤

   𝑟ଶ =

⎣
⎢
⎢
⎢
⎡

వ

యమ
భఱ
యమ
ళ

యమ
భ

యమ

⋮ ⎦
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎡
2.812500𝐸 − 01
4.687500𝐸 − 01
2.187500𝐸 − 01
3.125000𝐸 − 02

⋮ ⎦
⎥
⎥
⎥
⎤

 

 
The values are reasonably close, but a larger sample is required to improve the agreement. Change 
the sample size and observe how the calculated values tend towards the actual values. Change the 
other game configuration variables to simulate other game set-ups. The full dice game is simulated 
with  
 

players = 10 
rounds = 20 
startQ = 4 
dieLow = 1 
dieHigh = 6 

 

As with the analysis, the simulation only considers the number of counters between players and not 
the throughput. The actual throughput at the end of the game can be obtained by adding an extra 
dummy player that always rolls a zero, i.e. the number of counters between the last actual player 
and the dummy player can only ever increase. Its value at the end of the game gives the throughput 
of the system. It is left as an exercise to incorporate this into the simulation. 
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The following Python code simulates the game. The text is in a box to show where the left tab 
positions are as this is critical to Python. Note, Python is an interpreted language and long 
calculation times can be encountered for large sample sizes. It is reasonably easy to convert the code 
to a compiled language such as C++, Java, FORTRAN to produce results in a shorter time. 

 

 

 

 

 

 

 

  

# -*- coding: utf-8 -*- 
""" 
Dice Game Simulation Base Code 
 
@author: Chris Robbins, Grallator 
 
Licence: 
     
This code is free to use and adapt for educational purposes 
subject to this whole attribution section being included. 
 
The code is supplied as-is with no warranty or guarantees. 
 
""" 
 
import random 
 
 
outcome = [] 
players = 3 
rounds = 2 
sampleSize = 1000000 
 
startQ = 2 
 
# note, python arrays are indexed from 0 so there will be a lot of A[x+1] and A[x-1] to 
# keep the index in line with the player and queue numbers 
 
# Q[0] is between players 1 and 2, etc 
Q=[] 
 
# R[0] is the die roll of player 1, etc 
R=[] 
 
dieLow = 1 
dieHigh = 2 
 
# 
# stateVector[0] is the probability of one counter etc for each Q 
# these are stacked inside outcome so that, for example: 
# outcome[0][0] is the probability of one counter at Q[0], i.e. between player 1 and 2 
# outcome[0][1] is the probability of two counters at Q[0], i.e. between player 1 and 2 
# outcome[1][0] is the probability of one counters at Q[1], i.e. between player 2 and 3 
# etc 
for i in range(players): 
    outcome.append([]) 
    for j in range((dieHigh-1)*rounds+startQ): 
        outcome[i].append(0) 
     
    if i<players-1: 
        Q.append(startQ) 
     
    R.append(0) 
 
 
 
 
 



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
# start working with a random sample 
for sampleItem in range(sampleSize): 
    # give some indication that the calculation is progressing 
    if (sampleItem%(sampleSize/10)==0): 
        print("{:3.0f}% complete".format(100*sampleItem/sampleSize)) 
     
    # new game - initialise the values in Q 
    #  
    for q in range(players-1): 
        Q[q]=startQ 
     
    # play the game for the given number of rounds 
    for r in range(rounds): 
        # the roll round 
        for p in range(players): 
            # roll the die for player p+1 
            # the Python random number generator is based on the he Mersenne Twister 
            # and has a period of 2**19937-1 - so is a good choice! 
            R[p]=random.randint(dieLow, dieHigh) 
             
            # the first player always moves a number of counters equal to the roll 
            # into the system. However, other players can only move the number of 
            # counters they have. So first check if this is not the first player 
            if p>0: 
                # Q[p-1] is the number of counters the player can process. If this 
                # is less than the actual roll, reduce the roll value to match so 
                # that the value of Q[] does not go negative 
                if R[p]>Q[p-1]: 
                    R[p]=Q[p-1] 
                 
        # the move round 
        for q in range(players-1): 
            Q[q]=Q[q]-R[q+1]+R[q] 
     
    # end of game - process the stats 
    for q in range(players-1): 
        # add the Q size for each Q to the appropriate element in outcome 
        outcome[q][Q[q]-1]=outcome[q][Q[q]-1]+1 
             
         
# finished taking sample - scale the results and print them 
 
print(" Finished") 
print() 
print("Number of players:", players) 
print("Number of rounds: ", rounds) 
print("Sample size:       {:,.0f}".format(sampleSize)) 
print() 
outLine="     "             
for q in range(players-1): 
    outLine=outLine+"   Q {:<2},{:<2}   ".format(q+1,q+2) 
print(outLine) 
     
for n in range(rounds+2): 
    outLine="P({:2.0f})".format(n+1) 
    for q in range(players-1): 
        outcome[q][n]=outcome[q][n]/sampleSize 
        outLine=outLine+"{:13.6E}".format(outcome[q][n]) 
    print(outLine) 
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Answers to exercises 

 

Exercise 1 The initial condition is that 𝑄௜,௜ାଵ > 0   ∀ 𝑄௜,௜ାଵ and the die roll has a range  
1 ≤ 𝑅௜ ≤ 𝑀, for a maximum roll value M. Player 1 always adds  𝑅ଵ ≥ 1 counters to 
the system. The value of 𝑅ଶ may be such that player 2 can process all the counters in 
the pile 𝑄ଵ,ଶ, however 𝑅ଵ ≥ 1 counters will be added by player 1, which cannot be 
removed by player 2 in the same round. Therefore 𝑄ଵ,ଶ always has at least one 
counter at the end of a round. As 𝑄ଵ,ଶ always has at least one counter, even in the 
first round as 𝑄ଵ,ଶ is initialised with 𝑄ଵ,ଶ > 1 , there will always be at least one 
counter available to be passed by player 2 to 𝑄ଶ,ଷ in any round. By induction there 
will always be at least one counter to pass to any 𝑄௜,௜ାଵ in any turn, and therefore 
the minimum value of 𝑄௜,௜ାଵ at any time is 1. 

 
Exercise 2 The columns in the transition matrix give the probability of the value of 𝑄௜,௜ାଵ equal 

to the column index at the start of the turn becoming the value of the row index at 
the end of the turn. If the matrix has been constructed correctly, then all possibilities 
have been accounted for and the sum of all the probabilities must sum to one. 
Therefore, the sum of entries in a column must sum to one. 

 
Exercise 3 After the first round the following probabilities for the value of 𝑄ଵ,ଶ are found: 
 

𝑃ଵ,ଶ(1) =
ଵ

ସ
 

 
𝑃ଵ,ଶ(2) =

ଵ

ଶ
 

 
𝑃ଵ,ଶ(3) =

ଵ

ସ
 

 
For the case where 𝑄ଵ,ଶ = 1, which occurs with probability ¼, the following 
outcomes probabilities have been calculated: 
 

𝑃ଵ,ଶ(1) =
ଵ

ଶ
 

 
𝑃ଵ,ଶ(2) =

ଵ

ଶ
 

 
For the case where 𝑄ଵ,ଶ = 2, which occurs with probability ½, the following 
outcomes probabilities have been calculated: 

 
𝑃ଵ,ଶ(1) =

ଵ

ସ
 

 
𝑃ଵ,ଶ(2) =

ଵ

ଶ
 

 
𝑃ଵ,ଶ(3) =

ଵ

ସ
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For the case where 𝑄ଵ,ଶ = 3, which occurs with probability ¼, the following 
outcomes probabilities have been calculated: 
 

𝑃ଵ,ଶ(2) =
ଵ

ସ
 

 
𝑃ଵ,ଶ(3) =

ଵ

ଶ
 

 
𝑃ଵ,ଶ(4) =

ଵ

ସ
 

 
The total probability is found by a weighted sum of all the individual probabilities 
(sum of probability starting Q is given value multiplied by probability the starting Q 
gives the required Q value at the end of the turn): 
 

𝑃ଵ,ଶ(1) =
ଵ

ସ
×

ଵ

ଶถ
ொభ,మୀଵ

௔௙௧௘௥
௙௜௥௦௧

௥௢௨௡ௗ

+
ଵ

ଶ
×

ଵ

ସถ
ொభ,మୀଶ

௔௙௧௘௥
௙௜௥௦௧

௥௢௨௡ௗ

=
ଵ

ସ
 

 
𝑃ଵ,ଶ(2) =

ଵ

ସ
×

ଵ

ଶถ
ொభ,మୀଵ

௔௙௧௘௥
௙௜௥௦௧

௥௢௨௡ௗ

+
ଵ

ଶ
×

ଵ

ଶถ
ொభ,మୀଶ

௔௙௧௘௥
௙௜௥௦௧

௥௢௨௡ௗ

+
ଵ

ସ
×

ଵ

ସถ
ொభ,మୀଷ

௔௙௧௘௥
௙௜௥௦௧

௥௢௨௡ௗ

=
଻

ଵ଺
 

 
𝑃ଵ,ଶ(3) =

ଵ

ଶ
×

ଵ

ସถ
ொభ,మୀଶ

௔௙௧௘௥
௙௜௥௦௧

௥௢௨௡ௗ

+
ଵ

ସ
×

ଵ

ଶถ
ொభ,మୀଷ

௔௙௧௘௥
௙௜௥௦௧

௥௢௨௡ௗ

=
ଵ

ସ
 

 
𝑃ଵ,ଶ(4) =

ଵ

ସ
×

ଵ

ସถ
ொభ,మୀଷ

௔௙௧௘௥
௙௜௥௦௧

௥௢௨௡ௗ

=
ଵ

ଵ଺
 

 

Exercise 4 For this case it is useful to construct an outcome table that shows the outcome value 
of 𝑄ଵ,ଶ for the case where 𝑄଴ = 4, and for every possible combination of rolls for 
player 2, removing up to but not more than four counters, and player 1, 
subsequently adding that number of counters, as shown below. 
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𝑄଴ = 4 
Roll R2 

1 2 3 4 5 6 

Roll R1 

1 4 3 2 1 1 1 

2 5 4 3 2 2 2 

3 6 5 4 3 3 3 

4 7 6 5 4 4 4 

5 8 7 6 5 5 5 

6 9 8 7 6 6 6 

 
The probabilities 𝑃ଵ,ଶ(𝑁) are simply given by counting up the fractions for each value 
of N from 1 to 9. This gives, for example 
 

𝑃ଵ,ଶ(1) =
ଷ

ଷ଺
=

ଵ

ଵଶ
 

 
𝑃ଵ,ଶ(2) =

ସ

ଷ଺
=

ଵ

ଽ
 

 
etc., as required. 
 

 
Exercise 5 In this problem 𝑄ଵ,ଶ = 1, so only one counter can ever be transferred to 𝑄ଶ,ଷ, 

regardless of the value of player 2's roll, R2. For the case where 𝑄ଶ,ଷ = 1 at the start 
of the turn, player 3 will always roll a value 𝑅ଷ ≥ 1 and so will always process all the 
counters. The outcome is that player 3 always empties 𝑄ଶ,ଷ while player 2 always 
adds one counter to it, so that 𝑄ଶ,ଷ = 1 always, i.e. with probability 1. This means 
the transition probability of going from 𝑄ଶ,ଷ = 1 to 𝑄ଶ,ଷ = 1 is 1 
 
When 𝑄ଶ,ଷ = 𝑁 ≥ 2, player 3 can remove one or two counters, each with probability 
½. When Player 2 adds the counter they have, the net result is that ½ the time 
𝑄ଶ,ଷ = 𝑁 after the turn (one out, one in), and ½ the time 𝑄ଶ,ଷ = 𝑁 − 1 after the turn 
(two out, one in). So the transition probabilities are 
 
Probability of going from 𝑄ଶ,ଷ = 𝑁 to 𝑄ଶ,ଷ = 𝑁 − 1 is ½.  
Probability of going from 𝑄ଶ,ଷ = 𝑁 to 𝑄ଶ,ଷ = 𝑁 is ½.  
 
Using these results gives the transition matrix U as required. 

 
Exercise 6 Initially 𝑄ଵ,ଶ = 𝑄଴. The maximum value after the first round is given when𝑅ଶ = 1, 

i.e. the minimum number of counters possible is processed and removed, and 𝑅ଵ =
𝑀, i.e. the maximum number of counters possible is added. In this case, after the 
turn 
 

𝑄ଵ,ଶ = 𝑄଴ − 1 + 𝑀 
 
Which reads: start with 𝑄଴, process 1, add in M. I'll take the liberty of rearranging 
the above to the following  
 

𝑄ଵ,ଶ = 𝑀 − 1 + 𝑄଴ 
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On the second turn, the maximum possible number of counters is given when the 
same roll outcome is encountered (i.e. one is processed and M are added) so that 
the maximum value after two turns is 
 

𝑄ଵ,ଶ = 𝑀 − 1 + 𝑄଴ + 𝑀 − 1 = 2(𝑀 − 1) + 𝑄଴ 
 
After each turn a further (𝑀 − 1) can be added so that after t turns, the maximum 
possible size of 𝑄ଵ,ଶ , denoted Z, is 
 

𝑍 = (𝑀 − 1)𝑡 + 𝑄଴ 
 

 

 

 


